

An Initiative of **Ministry of Electronics** & Information Technology (MeitY) Government of India A Faculty Development Program

on

Machine Learning and Generative AI with Quantum Programming

In association with

Delhi Technical Campus, Greater Noida

June 16th – June 20th, 2025

Timings: 09:30 AM - 6:00 PM Register Before: June 13th , 2025

Venue: Hybrid Mode at Delhi Technical Campus, Greater Noida

Objectives of the Course

- To build a strong theoretical foundation in classical machine learning techniques.
- To introduce the architecture, principles, and implementation of generative AI models.
- To provide hands-on experience with current AI/ML development tools and libraries.
- To equip participants with skills to develop and deploy practical AI solutions.
- To demystify quantum computing concepts relevant to future AI applications.
- To enable participants to implement and simulate quantum algorithms using opensource platforms.
- To align participant knowledge with NEP 2020 goals, promoting research-driven and interdisciplinary pedagogy.

Why this course?

This course is essential for faculty, researchers, and professionals aiming to stay ahead in the rapidly evolving fields of Artificial Intelligence and Quantum Computing. It offers a unique blend of classical machine learning, generative AI, and quantum programming, providing both foundational theory and practical hands-on skills. With the increasing relevance of technologies like GANs, large language models, and quantum-enhanced AI, this program empowers participants to integrate these innovations into teaching, research, and real-world applications. Aligned with NEP 2020, it fosters interdisciplinary learning, curriculum development, and future-ready education, making it a vital step toward academic and industry relevance in emerging tech domains.

Prerequisites

No experience is required, but fundamental knowledge of any programming language would be helpful.

Experts from Academia/Industry

Who Should Register?

Any Interested Faculty/PhD-Scholars UG/PG/ & Industry Persons can register

Registration Fee

Fees: ₹ 250/- Faculty/Research Scholar/ Students ₹ 500/- Industry/Others Note: Refund will be done in case of course cancellation only, with in 20 working days

FDP Kits & Refreshment will be provided

How to make Payment

Please make the payment first using the below link upload the payment receipt when filling out the Google registration form

https://eict.iitr.ac.in/instruction-for-payment/

EICT Course Code: EICTIITR-FDP-5H6-05

Registration Link

https://forms.gle/v61AZci4nSftEicn8

in

Scan QR for registration

Register before: June 13th , 2025

Click on icon to follow us on:

Course Outcomes

- · Participants will acquire foundational and practical knowledge in machine learning and generative AI.
- Ability to build and experiment with AI models using industry-standard tools.
- Understanding of generative model workflows and their applications in various domains.
- Skills to integrate cutting-edge AI tools and concepts into academic curricula.
- Proficiency in writing and simulating quantum programs using Qiskit or PennyLane.
- Readiness to explore interdisciplinary research involving AI and quantum computing.
- Enhanced ability to contribute to curriculum development and student mentoring in line with emerging technologies and industry trends.

Focus Areas

- Foundations of classical machine learning algorithms (supervised, unsupervised, reinforcement learning).
- Generative AI models including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Large Language Models (LLMs).
- Hands-on development using modern AI frameworks (e.g., TensorFlow, PyTorch, Hugging Face).
- Practical applications and APIs for real-world ML and generative AI use cases.
- Introduction to quantum computing fundamentals and principles.
- Programming quantum algorithms using tools like Qiskit and PennyLane.

Course Features

- 40 Hours of Lectures, hands-on, and Pedagogy/Industry sessions.
- Lectures from Expert Speakers, Hands-on from industry/Academia experts.
- Access to learning material and video lectures
- Certificate by E&ICT Academy IIT Roorkee

Who may benifits

- Academic Faculty and Students(UG/PG)
- Government Officials.
- Working Professionals in the Industry and Startups.
- Research Scientists and Technical Staff.

This certificate can be considered in alignment with other Quality Improvement Programs (QIP) as well as NBA and NAAC for recognition/credit.

Principal Investigator

Prof. Sanjeev Manhas ECE Department, IIT Roorkee

Course Coordinators

- Prof. Sanjeev Manhas, IIT Roorkee
- Prof. Krishna Kant Singh, Delhi Technical Campus, Greater Noida

Reach Us:

- M.No.: 8112766397
- Landline No.: +91-1332286457
- Email: eict@iitr.ac.in